Introduction

R has long been a dominant language in the field of statistical computing and data analysis, praised for its expressive syntax, expansive library ecosystem, and deep statistical roots. Meanwhile, .NET 9 and 10 have brought powerful updates to the .NET ecosystem, including improved support for data processing, ML, and numerical computing. This post walks through a complex regression analysis in R, evaluates its strengths and weaknesses, and compares it to implementing the same in .NET 9/10 using C#.


The Scenario: Predicting Flight Delays

Let’s imagine we’re working with historical flight data to build a model predicting arrival delays based on the following features:

  • Departure delay (minutes)
  • Distance (km)
  • Day of the week
  • Carrier
  • Weather conditions

We’ll perform a multiple linear regression, interpret results, validate the model, and compare implementations.


Part 1: Implementation in R

📦 Step 1: Load the data and libraries

library(tidyverse)
library(caret)

flights <- read.csv("flights.csv")

🔍 Step 2: Preprocessing

flights_clean <- flights %>%
  filter(!is.na(ArrivalDelay), !is.na(DepartureDelay), !is.na(Distance)) %>%
  mutate(
    DayOfWeek = as.factor(DayOfWeek),
    Carrier = as.factor(Carrier),
    Weather = as.factor(Weather)
  )

📊 Step 3: Fit the regression model

model <- lm(ArrivalDelay ~ DepartureDelay + Distance + DayOfWeek + Carrier + Weather, data = flights_clean)
summary(model)

🧠 Interpretation (R handles this natively)

  • Coefficients with p-values show statistical significance.
  • Adjusted R² provides model fit quality.
  • Residuals can be plotted easily:
plot(model)

🔁 Step 4: Cross-validation

train_control <- trainControl(method = "cv", number = 10)
cv_model <- train(
  ArrivalDelay ~ .,
  data = flights_clean,
  method = "lm",
  trControl = train_control
)
print(cv_model)

✅ Pros of R

  • Built-in statistical summaries and diagnostics.
  • Rich ecosystem (e.g., caret, tidymodels, ggplot2).
  • Concise syntax for modeling.
  • Advanced statistical techniques available out-of-the-box.

❌ Cons of R

  • Performance may lag with large datasets.
  • Less optimal for integrating with enterprise systems.
  • Learning curve can be steep for non-statisticians.

Part 2: Implementation in .NET 9/10 with C#

With .NET 9 and 10, we can use the ML.NET framework to achieve similar results.

🔧 Step 1: Load data using IDataView

var context = new MLContext();
var data = context.Data.LoadFromTextFile<FlightData>("flights.csv", hasHeader: true, separatorChar: ',');
public class FlightData
{
    public float ArrivalDelay;
    public float DepartureDelay;
    public float Distance;
    public string DayOfWeek;
    public string Carrier;
    public string Weather;
}

🧪 Step 2: Preprocess and define pipeline

var pipeline = context.Transforms.Categorical.OneHotEncoding(new[] {
    new InputOutputColumnPair("DayOfWeek"),
    new InputOutputColumnPair("Carrier"),
    new InputOutputColumnPair("Weather")
})
.Append(context.Transforms.Concatenate("Features",
    "DepartureDelay", "Distance", "DayOfWeek", "Carrier", "Weather"))
.Append(context.Regression.Trainers.Ols());

🔍 Step 3: Train and evaluate

var model = pipeline.Fit(data);
var predictions = model.Transform(data);
var metrics = context.Regression.Evaluate(predictions, labelColumnName: "ArrivalDelay");

Console.WriteLine($"R²: {metrics.RSquared}, RMSE: {metrics.RootMeanSquaredError}");

🔁 Cross-validation

var cvResults = context.Regression.CrossValidate(data, pipeline, numberOfFolds: 10);
foreach (var result in cvResults)
{
    Console.WriteLine($"Fold R²: {result.Metrics.RSquared}");
}

✅ Pros of .NET 9/10 + ML.NET

  • Strong IDE tooling (Visual Studio, Rider).
  • Seamless enterprise integration (APIs, Blazor, MAUI).
  • High-performance runtime.
  • Cross-validation and evaluation metrics are easy to retrieve.
  • Native type safety and integration with C#.

❌ Cons of ML.NET

  • Less mature than R for statistical diagnostics.
  • Lacks out-of-the-box statistical testing (e.g., p-values).
  • Preprocessing is more verbose.
  • Limited modeling options compared to R’s CRAN ecosystem.

Summary: R vs .NET 9/10 for Regression

Feature/AspectR.NET 9/10 with C#
Statistical Rigor✅ Extensive (p-values, AIC, residuals)❌ Basic (R², RMSE, MAE only)
Ecosystem✅ Thousands of statistical packages⚠️ Smaller, but growing
Performance (large data)⚠️ May slow with big data✅ Highly performant with ML.NET
Integration (APIs, UI)❌ Requires bridges (Plumber, Shiny)✅ Strong (Web API, Blazor, MAUI)
Learning Curve⚠️ Moderate for devs, easy for analysts✅ Easier for C# developers
Deployment⚠️ Script-based, Docker preferred✅ Native support via .NET

What Should You Choose?

Use R when:

  • You need deep statistical insight and model diagnostics.
  • You’re in a research or academic environment.
  • You want to rapidly prototype models with visualization.

Use .NET 9/10 with ML.NET when:

  • You’re deploying models in production-grade enterprise apps.
  • You need strong type safety, scalability, and performance.
  • You’re already invested in the .NET ecosystem.

Both R and .NET 9/10 are powerful tools — and increasingly, they are complementary. Many production pipelines use R for prototyping and validation, and then port the final models into a .NET-based service. Choose the right tool for the right stage of your ML lifecycle!

Views: 6

Advanced Regression with R: A Deep Dive and Comparison with .NET 9/10

Johannes Rest


.NET Architekt und Entwickler


Beitragsnavigation


Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert